Skip to content

SCATTER

The SCATTER node creates a Plotly Scatter visualization for a given input DataContainer.Inputs ------ default : OrderedPair|DataFrame|Matrix|Vector the DataContainer to be visualizedParams:Returns:out : Plotlythe DataContainer containing the Plotly Scatter visualization
Python Code
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from flojoy import DataFrame, Matrix, OrderedPair, Plotly, flojoy, Vector
from nodes.VISUALIZERS.template import plot_layout


@flojoy
def SCATTER(default: OrderedPair | DataFrame | Matrix | Vector) -> Plotly:
    """The SCATTER node creates a Plotly Scatter visualization for a given input DataContainer.

    Inputs
    ------
    default : OrderedPair|DataFrame|Matrix|Vector
        the DataContainer to be visualized

    Returns
    -------
    Plotly
        the DataContainer containing the Plotly Scatter visualization
    """

    layout = plot_layout(title="SCATTER")
    fig = go.Figure(layout=layout)
    match default:
        case OrderedPair():
            x = default.x
            if isinstance(default.x, dict):
                dict_keys = list(default.x.keys())
                x = default.x[dict_keys[0]]
            y = default.y
            fig.add_trace(go.Scatter(x=x, y=y, mode="markers", marker=dict(size=4)))
        case DataFrame():
            df = pd.DataFrame(default.m)
            first_col = df.iloc[:, 0]
            is_timeseries = False
            if pd.api.types.is_datetime64_any_dtype(first_col):
                is_timeseries = True
            if is_timeseries:
                for col in df.columns:
                    if col != df.columns[0]:
                        fig.add_trace(
                            go.Scatter(x=first_col, y=df[col], mode="markers", name=col)
                        )
            else:
                for col in df.columns:
                    fig.add_trace(
                        go.Scatter(x=df.index, y=df[col], mode="markers", name=col)
                    )

        case Matrix():
            m: np.ndarray = default.m
            num_rows, num_cols = m.shape

            x_ticks = np.arange(num_cols)

            for i in range(num_rows):
                fig.add_trace(
                    go.Scatter(x=x_ticks, y=m[i, :], name=f"Row {i+1}", mode="markers")
                )

            fig.update_layout(xaxis_title="Column", yaxis_title="Value")
        case Vector():
            y = default.v
            x = np.arange(len(y))
            fig.add_trace(go.Scatter(x=x, y=y, mode="markers", marker=dict(size=4)))

    return Plotly(fig=fig)

Find this Flojoy Block on GitHub

Example

Having problem with this example app? Join our Discord community and we will help you out!
React Flow mini map

In this example we’re simulating data from LINSPACE, TIMESERIES, MATRIX and PLOTLY_DATASET and visualizing them with SCATTER node which creates a Plotly Scatter visualization for each of the input node.