Skip to content

LINE

The LINE node creates a Plotly Line visualization for a given input DataContainer.Inputs ------ default : OrderedPair|DataFrame|Matrix|Vector the DataContainer to be visualizedParams:Returns:out : Plotlythe DataContainer containing the Plotly Line visualization of the input data
Python Code
from flojoy import flojoy, Plotly, OrderedPair, DataFrame, Matrix, Vector
from numpy import arange
import plotly.graph_objects as go
from pandas.api.types import is_datetime64_any_dtype
from nodes.VISUALIZERS.template import plot_layout


@flojoy
def LINE(default: OrderedPair | DataFrame | Matrix | Vector) -> Plotly:
    """The LINE node creates a Plotly Line visualization for a given input DataContainer.

    Inputs
    ------
    default : OrderedPair|DataFrame|Matrix|Vector
        the DataContainer to be visualized

    Returns
    -------
    Plotly
        the DataContainer containing the Plotly Line visualization of the input data
    """

    layout = plot_layout(title="LINE")
    fig = go.Figure(layout=layout)

    match default:
        case OrderedPair():
            x = default.x
            if isinstance(default.x, dict):
                dict_keys = list(default.x.keys())
                x = default.x[dict_keys[0]]
            y = default.y
            fig.add_trace(go.Scatter(x=x, y=y, mode="lines"))
        case DataFrame():
            df = default.m
            first_col = df.iloc[:, 0]
            is_timeseries = False
            if is_datetime64_any_dtype(first_col):
                is_timeseries = True
            if is_timeseries:
                for col in df.columns:
                    if col != df.columns[0]:
                        fig.add_trace(
                            go.Scatter(
                                y=df[col].values,
                                x=first_col,
                                mode="lines",
                                name=col,
                            )
                        )
            else:
                for col in df.columns:
                    fig.add_trace(
                        go.Scatter(
                            y=df[col].values,
                            x=df.index,
                            mode="lines",
                            name=col,
                        )
                    )

        case Matrix():
            m = default.m

            num_rows, num_cols = m.shape

            x_ticks = arange(num_cols)

            for i in range(num_rows):
                fig.add_trace(
                    go.Scatter(x=x_ticks, y=m[i, :], name=f"Row {i+1}", mode="lines")
                )

            fig.update_layout(xaxis_title="Column", yaxis_title="Value")
        case Vector():
            y = default.v
            x = arange(len(y))
            fig.add_trace(go.Scatter(x=x, y=y, mode="lines"))

    return Plotly(fig=fig)

Find this Flojoy Block on GitHub

Example

Having problem with this example app? Join our Discord community and we will help you out!
React Flow mini map

In this example we’re simulating data from LINSPACE, TIMESERIES, MATRIX and R_DATASET and visualizing them with LINE node which creates a Plotly Line visualization for each of the input node.